
Automated Incremental Design of Flexible Intrusion Detection Systems on
FPGAs1

Zachary K. Baker and Viktor K. Prasanna
University of Southern California, Los Angeles, CA, USA

zbaker@halcyon.usc.edu, prasanna@ganges.usc.edu

Abstract

Intrusion detection for network security is a compute-
intensive application demanding high system perfor-
mance. This paper presents a variety of strategies we
have developed for the automatic synthesis of highly
efficient intrusion detection systems. We create FPGA
architectures using a high-level, graph-based partition-
ing methodology. We provide a library of performance-
customized architectures, which, through more efficient
communication and extensive reuse of hardware compo-
nents, provide dramatic increases in area-time perfor-
mance. This paper addresses a problem of earlier de-
signs, the requirement for complete place-and-route for
small changes to the pattern database, through an opti-
mized incremental design strategy.

1 Introduction

The continued discovery of programming errors in
network-attached software has driven the introduction of
increasingly powerful and devastating attacks [3, 7]. At-
tacks can cause destruction of data, clogging of network
links, and future breaches in security. In order to pre-
vent, or at least mitigate, these attacks, a network admin-
istratori can place a firewall or Intrusion Detection Sys-
tem at a network choke-point such as a company’s con-
nection to a trunk line (Figure 1). A firewall’s function is
to filter at the header level; if a connection is attempted
to a disallowed port, such as FTP, the connection is re-
fused. This catches many obvious attacks, but in order to
detect more subtle attacks, an Intrusion Detection Sys-
tem (IDS) is utilized. The IDS differs from a firewall
in that it goes beyond the header, actually searching the
packet contents for various patterns that imply an attack
is taking place, or that some disallowed content is be-
ing transferred across the network. Current IDS pattern
databases reach into the thousands of patterns, providing
for a difficult computational task.

1Supported by the United States National Science Foundation/ITR
under award No. ACI-0325409 and in part by an equipment grant from
the HP Corporation.

Methods commonly used to protect against security
breaches include firewalls with filtering mechanisms to
screen out obviously dangerous packets, and intrusion
detection systems which use much more sophisticated
rules and pattern matching to sense potential malicious
packets. These techniques require significant compu-
tational resources. However, using automated design
strategies for highly-parallel adaptive soft processors,
there is potential for dramatic performance improve-
ments. FPGAs provide an attractive platform for hard-
ware implementation of intrusion detection because of
the dynamic nature of the ruleset – as new vulnerabili-
ties and attacks are identified, new rules must be added
to the database and the device configuration must be re-
generated.

������� ���	�
 ����
������������ �

Figure 1. Intrusion detection systems pro-
tect networks from external threats. The
use of FPGA allows a system to take ad-
vantage of massive parallelism in this is a
highly computation-intensive task

This paper describes our work in creating Intrusion
Detection Systems with customized performance, allow-
ing a designer to mix and match from a collection of pro-
cess steps and a family of architectures we have devel-
oped. Some of our results have already been published
in [1].

Our basic architecture is a pre-decoded multiple-
pipeline shift-and-compare matcher. While this ap-

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 FEB 2005

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Automated Incremental Design of Flexible Intrusion Detection Systems
on FPGAs

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Southern California, Los Angeles,CA,USA

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM00001742, HPEC-7 Volume 1, Proceedings of the Eighth Annual High Performance
Embedded Computing (HPEC) Workshops, 28-30 September 2004 Volume 1., The original document
contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

18

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

proach can be considered “brute force” compared to a
state machine approach [2, 4, 6] or a hashing approach
[5], the simplicity of the units allows for exceptional
area and time performance. The basic architecture, as
described in detail below, reduces device routing and
comparator size by converting incoming characters into
many bit lines, each representing the presence of single
character.

This basic architecture is extended in various ways.
To allow for better area performance, we present a par-
tial tree architecture that allows for significant reduction
in redundant comparisons by independently matching
prefixes that are shared across a range of patterns. To
provide increased throughput performance, we provide a
design that replicates a fraction of the hardware to allow
for exact matching for k bytes per cycle. To provide high
throughput with exceptional area efficiency, we provide
an architecture that sacrifices exactness and allows for
an increased false positive rate.

The architectures we have developed are only part of
the contributions of this paper. To achieve better uti-
lization of these architectures, system-level preprocess-
ing steps are required, serving various functions includ-
ing partitioning, grouping, and code generation. These
steps, by considering the entire set of patterns in lieu of
naı̈ve hardware generation.

By intelligently processing an entire ruleset, our tool
partitions the pattern collection into multiple pipelines
in order to optimize the area and time characteristics
of the system. The rule database is first converted into
a graph representing the similarity of the ruleset. De-
pending on the flow, the graph edges are weighted to
provide higher connectedness between rules with par-
ticular types of similar characters; this allows for in-
creased grouping of prefixes as well as general shared-
character grouping. The graph is partitioned based on
the weighted graph and then sent to the partitioning rou-
tines, which act to reduce the interconnect burden in a
given pipeline. Prefixes are then grouped for the tree ar-
chitecture, if required. Based on this pre-processing, the
system is generated from templates. By applying auto-
mated graph theory and trie techniques to the problem,
the tool more effectively optimizes large ruleset as com-
pared to naı̈ve approaches.

2 Optimized Incremental Design

A problem with recent designs utilizing hard-wired
comparator modules is in the requirement for a full
place-and-route to make any change, no matter how
small, to the design. Because of the exceptional area
and time efficiency possible with this customized design
paradigm, this issue has been largely ignored.

A portion of this paper covers our solution to the
place-and-route problem. For the situation of adding a
rule, we utilize the min-cut partitioned graph produced

for the initial design. Determining the optimal partition
to add a new pattern to is a fairly trivial task, only requir-
ing a consideration of characters already mapped to the
partition and pre-existing prefixes. The partition least
modified by the addition of the new rule is determined
by comparing the pre-decoded bits already within the
partition, as well as the potential for using previously
mapped prefixes. This VHDL code describing this par-
tition is then modified by the tool. If the new pattern
shares a prefix with some other pattern in the partition,
the partial result of the previous pattern is mapped to the
new pattern, reducing new wiring. The removal of rules
is far easier, only the connections to the final result tree
are removed. The new partition code is sent to the incre-
mental synthesis and place-and-route functions of Xilinx
ISE 6.2. The tool only re-synthesizes the modified mod-
ules. Because of the previously defined area constraints,
each pipline module is independent of the others. Thus,
only the routing in the modified module requires place
and route.

Our initial results show that for a change of one pat-
tern in a single partition in system with p partitions, the
time for place-and-route is reduced to 1/p plus some
overhead for reprocessing the guide files. This overhead
can be fairly large (approaching 50% of the total PAR
time). However,without the use of incremental place and
route, the system would require a completely new place-
and-route, or p times additional time.

References

[1] Z. K. Baker and V. K. Prasanna. A Methodology for
the Synthesis of Efficient Intrusion Detection Systems on
FPGAs. In The Twelfth Annual IEEE Symposium on
Field Programmable Custom Computing Machines 2004
(FCCM ’04), 2004.

[2] Z. K. Baker and V. K. Prasanna. Time and Area Effi-
cient Pattern Matching on FPGAs. In The Twelfth Annual
ACM International Symposium on Field-Programmable
Gate Arrays (FPGA ’04), 2004.

[3] Z. Chen, L. Gao, and K. Kwiat. Modeling the Spread of
Active Worms. Twenty-Second Annual Joint Conference
of the IEEE Computer and Communications Societies (IN-
FOCOM 2003), April 2003.

[4] C. R. Clark and D. E. Schimmel. Efficient Reconfigurable
Logic Circuits for Matching Complex Network Intrusion
Detection Patterns. In Proceedings of FPL ’03, 2003.

[5] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and
J. Lockwood. Implementation of a Deep Packet Inspec-
tion Circuit using Parallel Bloom Filters in Reconfigurable
Hardware. In Proceedings of HOTi ’03, 2003.

[6] B. L. Hutchings, R. Franklin, and D. Carver. Assisting
Network Intrusion Detection with Reconfigurable Hard-
ware. In Proceedings of FCCM ’02, 2002.

[7] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford,
and N. Weaver. Inside the Slammer Worm. IEEE Security
& Privacy Magazine, 1(4), July-Aug 2003.

2

Baker 1HPEC ’04

Introduction to Intrusion Detection
Systems

Zachary K. Baker and Viktor K. Prasanna
University of Southern California

June 22, 2004

Baker 2HPEC ’04

Introduction

• All incoming packets are filtered for specific characteristics
or content,

• Databases have thousands of patterns requiring string
matching

• We can achieve 10 Gb/s and higher rates desired
– Provided by pipelined, streaming architectures,
– Reduction of redundancy,
– Efficient recoding,
– Reduction of routing through pipeline partitioning

Baker 3HPEC ’04

Efficient Matching Design

• Pre-decoding into individual characters allows for high
time and area efficiency

• Pipelining allows for reduced interconnect latency and
separation of related patterns into prefix-linked modules

Partition B
Match1

Partition B
Match2

/ r o t s h

Partition B, Reg 0

Partition B, Reg 1

Partition B, Reg 2

Partition B, Reg 3

. r

Partition A, Reg 0

Partition A, Reg 1

Partition A, Reg 2

Partition A, Reg 3

Input Character

Partition A
Match 1

Partition A
Match 2

Partition B, Reg 4

Baker 4HPEC ’04

Incremental Architecture Synthesis

• Module-based, partitioned pipelines allow for
several independent modules connected only by
controller

– Changes in one module do not necessarily require
recompilation of other modules

• Significantly reduce place and route costs

• Cost for changing rules in one of k partitions:
overhead + 1/k

Introduction to Intrusion
Detection Systems

Firewall/Intrusion
Detection System

U
np

ro
te

ct
ed

 In
te

rn
et

Pr
ot

ec
te

d
In

tra
ne

t

Quarantined Packets

What is Intrusion Detection?

• All incoming packets are filtered for specific
characteristics or content

• Databases have thousands of patterns requiring
string matching
– FPGA allows fine-grained parallelism and

computational reuse
• 10 Gb/s and higher rates desired

– Provided by pipelined, streaming architectures

Other Approaches

• Objective: find all occurrences of a pattern in an input

• Naïve approach: O((n-m+1)m)

• Shift-and-compare: O(n), large hardware requirements,
O(nm) work

• Hashing: O(n), hashing can be complex, O(nm) work

• KMP: O(n): other algorithms may be faster in practice,
but do not provide low precise upper bound (2n – m),
O(n+m) work

High-Performance Shift-and-Compare
Architectures

Various contributions to shift-and-compare architectures:

• Pre-decoded architecture provides significant area
and routing improvements over encoded data

• Graph-based partitioning of patterns allows for
reduced routing complexity and increased frequency
performance through multiple pipelines

• Average of 15% decrease in area, 5% decrease
in clock period over unpartitioned unary

Methodology Flow

Pattern
Database

Create
Weighted Similarity

Graph
Partition Graph

Synthesis and
Place and Route

(Xilinx tools)

Generate
Synthesizable

VHDL
Generate Prefix Trees

Create Pipeline
Data Structures

• Trie-based prefix grouping allows for reduced area
consumption through lower redundant comparisons

• 4-byte prefixes turn out to be very appropriate for intrusion
detection:

/cgi-bin/bigconf.cgi
/cgi-bin/common/listrec.pl
/cgi-sys/addalink.cgi
/cgi-sys/entropysearch.cgi

• Replication of hardware and delays allow for multi-byte
per cycle throughput at high clock rates

• Pipeline is not increased in size – large source of slice
consumption

• Front end decoders increases in size by k

• Back end matchers increase in size by k

Reduction of Resource Usage

Partition B
Match1

Partition B
Match2

/ r o t s h

Partition B, Reg 0

Partition B, Reg 1

Partition B, Reg 2

Partition B, Reg 3

. r

Partition A, Reg 0

Partition A, Reg 1

Partition A, Reg 2

Partition A, Reg 3

Input Character

Partition A
Match 1

Partition A
Match 2

Partition B, Reg 4

 1 way 4 way 8 way

Number of Slices 299 721 1338

Clock Period 4.2ns 4.6ns 5.3ns

Throughput 1.9Gb/s 6.9Gb/s 12.1Gb/s

Efficiency 1 1.51 1.41

*Efficiency in throughput/area, normalized to 1-way (~100 rules)

Customized Performance

• Variations in tool flow provide customizable performance:

– Tool Options

• Small: partitioned and pre-decoded architecture

–Prefix trees

• Fast: k-way architecture

• Fast reconfiguration, minimum complexity

–KMP architecture

Comparison of Related Architectures

Design Throughput Unit Size Performance
USC Unary 2.1 Gb/s 7.3 283

USC Unary (1 byte) 1.8 Gb/s 5.7 315
USC Unary (4 byte) 6.1 Gb/s 22.3 271
USC Unary (8 byte) 10.3 Gb/s 32 322

USC Unary (Prefilter) 6.4 Gb/s 9.4 682
USC Unary (Tree) 2.0 Gb/s 6.6 303

Los Alamos (FPL '03) 2.2 Gb/s 243 9.1
UCLA (FPL '02) 2.9 Gb/s 160 18

UCLA w/Reuse (FCCM '04) 3.2 Gb/s 11.4 280
U/Crete (FPL '03) 10.8 Gb/s 269 40.1

U/Crete (FCCM '04) 9.7 Gb/s 57 170
GATech (FCCM '04) 7.0 Gb/s 50 140

* Throughput is assumed to be constant over variations in pattern size.
Unit size is the average unit size for a 16 character pattern (in logic cells;
one slice is two logic cells), and performance is defined as Mb/s/cell).

Incremental Architecture Synthesis

• Goal: Reduce place and route costs

• Cost for changing rules in one of k partitions:
overhead + 1/k

• Key: Predefinition of area constraints

Determining the Optimal Partition

()

j

i

P

i
j

ipi PS

δ

δδ

δ

in are jpartition toadd tocharacters

such that j find

\

min
0

*

=

=

=

Definitions:

• Sp* the set of characters required to represent the new pattern p*.

• The set difference between the characters currently represented in Pi
and the characters that are present in Sp* is

• The partition which will require the addition of the minimum number
of new characters is the optimal partition Pj.

• The optimal partition is selected from the set of partitions P.

jδ

Relevant Publications

“Time and Area Efficient Pattern Matching on FPGAs,”
Proceedings of the 12th Annual ACM International
Symposium on Field-Programmable Gate Arrays (FPGA '04)

“A Methodology for the Synthesis of Efficient Intrusion
Detection Systems on FPGAs,” Proceedings of the Twelfth
Annual IEEE Symposium on Field Programmable Custom
Computing Machines 2004 (FCCM '04)

“Automated Incremental Design of Flexible Intrusion
Detection Systems on FPGAs,” Proceedings of the Eighth
Annual Workshop on High Performance Embedded
Computing (HPEC '04)

Additional publications: http://ceng.usc.edu/~prasanna

	Precis:
	Agenda:
	Poster:
	Abstract:

